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1. Introduction

In Anthropology and Biological Sciences, situations arise when
certain multivariate populations are found to be heterogeneous, and
there is a need to find out which subsets of the populations are most
alike and which are least alike (or, in the words of Rao [9], we want
to find out the clusters of like populations).

Rao and Tocher made a subjective approach to this problem
which, in fact, was not based on probabilistic considerations.
Working on the principle of minimum average distance, they
suggested a technique based on the criterion that any two groups
belonging to the same cluster should at least on the average show a
smaller Mahalanobis distance than those belonging to different
clusters.

A graphical approach to the same problem was given by Rao
[9] on the basis of significant discriminant scores. He suggested
plotting the scores in a space whose dimensionality is equal to the
number of significant eigen values. In situations where there are
more than two significant eigen values, Rao [9] suggested having
pairwise plane representations of the points. Relying mostly on the
plane representation of the most significant scores, he proposed to
form clusters of population which liepiclorially close to one another.

In what follows, we have proposed a procedure for forming
clusters of like populations where we seek a departure from Rao's
and Tocher's subjective approach. We, instead, suggest two stages.
Stage 7 is a sort ofprediction where we make use ofRao's graphical
approach. Stage H corrects a predicted cluster where a new
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definition ofa cluster is first given and then as many as three alter
native statistics are proposed. Further, in each, unlike Rao and
Tocher, we are able to give probability to our decision. The test
procedure for all the three alternatives is discussed in detail where
only one ofthem is demonstrated by an illustrative example.

Again, with regard to the level of significance, we follow
Duncan [3] and propose the /•—mean vectors {r—2, 3,...k) significance
level, for a preassigned a to be

a,= l-(l-a)r-i (, = 2, 3,...,k) ...(1.1)

where (r—1) is the number of independent comparisons which can
be specified among the r mean vectors. Since the statistic used in
demonstrating the illustrative example involves a central chi-square
in both the studentized and classical cases, we have computed the
corresponding tabular chi-square values against

dr ('•=2(1) 20) for preassigned a = .05 and .01(1)

2. DbFINITION of a cluster and STATEMENT OF PROBLEiH :
Definition of a cluster

A cluster of populations is a group of populations having the
same mean vector.

Statement of Problem ^

Suppose we are given k j?-variate normally distributed popula
tions assumed to have the same dispersion matrix S,

Let Xirt (/=2, , p ; 2 , k ; h=\, 2, .. Nr and p<k) be
the observation of the ith trait on the h th individual from the r th
sample of size N drawn from the r th population. Let X' be the
kxp matrix of k sample mean vectors. Further, let 5=(iij) and
)K=(M'jj) be the between and within independent mean product
(.M.P) matrices with «i and /ig degrees of freedom (D.F), respectively,
computed on the basis of k /?-variate samples, where,

k

"i 2 Nr {Xi-Xd {Xir-X,) ... (2.1)
r=\

k

J^(X,,n-X,r)iX^r>.-X,r) ..(2.2)
»=l h=l
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and

Suppose further that the hypothesis of homogeneity of mean
vectors of the populations has been rejected by the use of Wilks'
[11] A-statistic (Rao [9]/7. 260) and Barlett's [2] approximation to
its probability.

After concluding the over-all heterogeneity of mean veclors of
populations, our job now is to find which subsets of populations
form clusters. To do this, we first introduce the following
statistics ; -

The first statistic is^the Mahalanobis' distance between two
populalions and is computed as-follows ; —

{X,-Xy
where w~^ is the inverse of w.

For testing the hypothesis of equality of the mean vectors
involved in a predicted cluster, we propose in the first alternative of
stage II an analogue of Duncan's stage 2 (Federer [4], pp. 19—40 of
the multiple F test. He computed the variance of the means
involved in a predicted cluster of like means and tested it against
his least significance sums of squares with level of significance based
on d.f. in multivariate situations, as the analogue of the "Variance
of the k means involved in a cluster" we propose the statistic
(Hotelling, [7] defined as follows :—

tr. (iv-i B) ...(2.4)

where again, is the inverse of vf.

The distribution of under the null hypothesis, is known in
the classical case to be the central chi-square with pik^—X) d.f. and
in the studentized case to be an asymptotic expression involving
chi-squares which we write below in (2.7).

Further, since we have made frequent use of both the studen
tized Di and T,® (r=2; 3 k), we propose to modify the
expressions in (2.3) and (2.4) to an easily workable form with the use
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of significant discriminant scores (Rao, [9]. Taking, therefore,
Y\kxp) as the matrix of significant discriminant scores whose first
column gives the discriminant score corresponding to the largest,
the second to the second largest, and so forth, we reduce the
studentized Statistics and Tft^respectively, in (2.3) and (2.4) to

and

where

i=l

£ Nr
1=1 r=l

f.-(S N,T„)j[lN,)
r=l r=l

...(2.5)

...(2.6)

and where,the first p' scores are the most significant ones.

Since each of the statistics T/ 0—2, 3 k) involves chi-
squares for both the studentized and classical cases and further since
the level of significance (defined in in (1.1) changes with the change
in the value of r, we need, therefore, to find some more tabular
chi-square values which so far have not been computed. To do
this we first find a, for r : 2(1) 20 from the formula (1.1) for both
K= .01 and .05 and then find the corresponding normal variates by

the linear interpolation formula with the help of Table I of Hartley
and Pearson, [6]. Finally adopting Aitken's iterative method for
interpolation, the new chi-square values values are computed against
the normal variates. These tabular values at various significance
levels ar for /•=2(1) 20 and d.f.==l(l) 30 (10) 100 for preassigned
a=.01 and .05 have been found by the author [1].

Finally, to find the tabular values of studentized T/ for any r,
we use the formula (1 to [8]), for r=2, 3, k,

x')+... ...(2.7)
2^2 \ 'hP J

where is central chi-square with /^(r—1) d.f.

Note : It may be pointed out that we propose to usep instead
ofjp'for defining the degrees of freedom, sine? the affect of all,/?
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correlated variates has been taken care of by the p' discriminant
scores.

Since the illustration presented for demonstration concerns the
studentized its tabular values for *•=2(1) 5, 1(1)4, /7=4, and
112=29 at 5% and 1% significance levels.are tabulated approximately
as given below in Table I : —

TABLE I

'•=(«+l) d.f. =p{r-\)
="1P

X2(.05), X^C.oi). (r2.05). (rs.oi).

2. 4 9,4877 13,2767 12,7371 18,2030

3. 8 13,4428 18,1825 16,7783 24,0936

4. 12 17,1889 22,7748 21,7064 29,9103

5. 16 20,8200 27.1912 25,6131 25,6187

3. The proposed stages for Forming Clusters

We propose two stages for the purpose. Stage I comprises
three steps wherein we predict the possible clusters. Stage II then
corrects the prediction on some probabilistic basis. Three alternative
methods have been proposed for stage H which are as follows : ,

(0 The Dudcan-Hotelling test.

(ii) The 'Extreme Distance from the Mean', fi-test.

{Hi) The 'Largest Distance', R-test.

Stage I: Prediction ;

Step 1 : Compute Mahalanobis distances by the formula
(2.5) between all the pairs of k populations and set up the table of
distance, where the distances of each population from the remaining
ones are arranged in order of increasing magnitude, Such a table
(like that in Table 5) will enable us to visualize which of the popula
tions are closer to each other and which are farther away.

Step 2 : Represent graphically the significant discriminent
scores of each population. For p>1, they be represented pairwise
on plane graph paper. Relying largely on the plane representations
of the most significant discriminant scores, visualize which of the
populations He closer together and which of them lie farther apart.
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Step 3 : Step 3 deals with the prediction of the clusters
obtained on the basis of the first two steps. Keeping in view the
table of distances and the graphic plane representations, estimates
roughly the 'would be' clusters - closeness being the only criterion for
the populations to form a predicted cluster.

The following two points are worth noting

(/) That a wide range be allowed in selecting subsets of
clusters (Since giving a narrow range might result in
the loss of a population lying actually in a cluster),

(//) That over-lappings be allowed (Since sometimes one is
uncertain as to whether to include one (or more)
population (s) in one or the other cluster (j)).

Stege II Alternative I

Correction by the Duncan—Hotelling Test

No generality is lost if we explain the procedure for only one
predicted cluster having ki populations in the following steps :—

(/•) Compute the Statistic by the formula (2.6).

(U) Compare the computed with the tabular T\ where

a is already defined in (I.l)
fcj

{Hi) If is less than or equal to , all the popula-

tious are concluded to form a cluster. Otherwise, split the /q
populations into ki sets of (fci —1) populations each.

(iv) Compare the computed values for each of the /cj

sets with the tabular . Of these some may be significant and

some may not be. Those nonsignificant will yield clusters with the
corresponding number of populations involved in them. Those for
which values are significant are further split into (A^i—l)

sets of (fci—2) populations each and their corresponding —

values are compared with the tabular T^a . In this way, the pro-

cess is continued till we arrive at the clusters of the type defined.

The working criterion analogous to Duncan's can be presented
as follows : —
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"A group of ki populations will form a cluster if

computed for the mean vectors of the /c, populations is non signifi
cant and also the of each and every set of populations of which
the ki populations form a subset is significant according to —
level test, for some pre-assigned a, where r is the number of
populations involved in the set".

Alternative II Correction by the E Test

For the second alternative procedure, the proposed test
statistic is the "Extreme Mahalanobis distance from the Mean"—
which we name as £-test. The level of significance is again based on
degrees of freedom (d.f) and is as defined in (1.1). The exact
distribution of the ^-statistic is not known. Siotani [10] has found
the approximate distribution of this statis<ic for the k p-variate
normal populations and has computed the tabular values at 5% and
1% significance levels for some particular values of p. Following
Siotani's tables, the required tabular values at revised significance
levels can be computed, and whh these approximate tabular values
in hand, we discuss the procedure for the £-test as follows : —

Suppose again, without loss of generality, that the predicted
cluster contains /ci populations, To correct it, we propose the
following steps .—

(0 Compute the statistic £"10'= 1, 2,. ..., /ci), the Maha
lanobis' distance between the mean vectors of the !th
population and the grand mean vector of the /f,
populations.

(») Without losing generality, let Eic^ be the largest of all
the computed Ei{i=\, 2, fci),

(iii) Compare the with the tabular , where Kj, is as
1 1

defined already in (1.1) and a is some pre-assigned
significance level.

(iv) If Eu is less than or equal to Ea , all the k^ populations

involved are concluded to form a cluster. Otherwise,

split the /ci populations into k^ sets of (/ci —1) popula
tions each.

i
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(v) Compare the extreme distance of each set of (A:i —1)
populations from their respective grand mean vectors
with the tabular E„ . Out of them some may be

"(ft1-1)
significant and some may not be. Those non-significant
will yield clusters with the corresponding populations
involved in them. Those for which the extreme E's
are significant, are further split into sets of (ki—2) each
and their corresponding extreme E's are then compared
against the tabular . In this way the process is

contained till we arrive at the clusters of the type
defined.

Thus a working criterion analogous to Duncan's can be stated
as follows : —

"A group of /ci populations will form a cluster if the extreme
distance (assumed to be the largest amongst all the /cj distances

between the mean vectors of the individual populations and their
grand mean vector) is non-significant and if, furthermore, such
extreme E's of each and every new set of populations of which the
ki populations form a subset, is significant according to a^—level
E-test for some pre-assigned a, where r is the number of populations
in the set".

Alternathe III. Correction by the R-test

Lastly, the third aUernative procedure, the proposed test
statistic is Ihe 'Largest Mahalanobis distance' which we call, for
brevity, as R-test. The exact or approximate distribution of the
R-statistic is not known. We have been able to find the distribution

(Bagai, [1] of the R-statistic in the classical bivariate case in the
form of definite integral for any number of populations, but still
its tabular values have not baen computed. Again the level of
significance is proposed to be based on degrees of freedom and is as
given in (LI).

In discussing the procedure for this alternative, we again
follow Duncan and extend his procedure for the range test (Federer,
[4] to the Multivariate case. Without loss of generality, suppose
that a predicted cluster consists of /cj populations. The procedure to

i
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correct this prediction is described in detail in the following
steps

(0 Compute^^ 2^ ^ '
/C]) between the r th and s th populations.

(») Again, no generality will be lost, if we suppose that the
distance Rnc^ between the first and the th populations

is the largest amongst 2^ distances.

{iii) Compare the computed with the tabular where

a,5j is as defined in (1.1) and a is a pre-assigned level of
significance. If is less than or equal to /?„ , all the

7ci

A:i populations involved are considered to form a cluster,
Otherwise, split the set of populations into /cj sets of
(A:i—1) populations each.

(«v) Compare the largest distance of each set of (/ci —1)
populations with the tabular _i . Out of them some

may be significant and some may not be. Those non
significant will yield clusters with the populations
involved in them. Those for which the largest distance
is significant are farther split into sets of (fci—2) and
their respective largest distances are again compared
against their corresponding tabular values . In

this way, the process is continued till we arrive at the
clusters of the type defined,

Thus the working criterion analogous to Duncan's can be
summed up as follows

"A group of populations^will form a cluster if thedis
tance (assumed to be the largest amongst all 2^ )
distances) between the first and the /cj th populations
is non-significant and also the largest distance, amongst

it all possible distances between pairs of each and every
, new set of populations of which the /cj populations form
; a subset, is significant according to a^—level i?-test, for
' some pre-assigned a, where r is the number of popula-
' tions in the set".
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4. Illustration Through Alternative I

To demonstrate the theory we present below an illustration
where the samples have been drawn on the basis of nested sampling.

Description of the Data :

Data were taken from, the Forest Productions Leboratory
Division, Forestry Branch, Department of Northern Affairs and
National Resources, Vancouver, B.C., Canada. Shipments of logs
ot various species of trees from various localities of Canada were
received. The interest lay in clustering the species on the basis of
their static bending properties. For this purpose, the following six
measurements were taken at several locations on each tree ;—

•^1 : Modulus of elasticity ;

•^1 : Work to the maximum limit;
^3 : Fibre Strength at proportional limit;

^4 : Modulus of rupture ;

^5 : Specific gravity at oven dry ;

^6 : Work to the proportional limit.

JVo/e : While finding the values of the determinants of the
sum of product (S.P,) matrices to be used for tests of significance,
it was found that they came out to be zeros, which enabled us to
suspect that the variables were functionally dependent. The fact
was actually varified when the physical interpretation was sought.
The last two variables were found to be functionally dependent on
the first four Zj, Xi, Zg, and Zi, We tlius discarded and and
continued our work on the variables X2, Xg, and X^,

The species taken for the purpose are listed as follows

(1) Yellow cedar,

(2) Lodge pols pine,

(3) Western larch,

(4) Western Yellow pine,

(5) Western white pine,

(6) Western white spruce,

(7) Sitka spruce,

(8) Amabilis fir.
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(9) Western Aamloch,

(10) Engelman spruce,

(11) Western red cadar,

(12) Coast mature Doughlas fir,

(13) Interior mature Douglas fir,

(14) Coast second growth Douglas fir.

In what follows we will call each species by its corresponding
number instead of specifying each time its name.

Description of the Model of Nested Sampling

We have the mixed model of nested sampling with fixed species
and random localities and locations on trees. Further, the number
of localities and locations is not uniform in all cases.

Let XiMti be the observation of the i th character on the I th
location of the t th tree belonging to the j th locality of the./j th
species. In place of observation Xima we are provided with the
means Xan. alongwith the corresponding number of locations. The
model for such data is :

Khit~ +£ft3«.
where

(/) Xii}f={XiUju Xihid is a four dimensional mean
vector of locations on the t th tree from the j th locality
of the h th species.

(ii) jA is the four dimensional,mean vectorof the populations;
and Z...is the corresponding sample statistic.

(»•/•) is again tee four dimensional h th species fixed effect,
but, for the sake of [illustration, we will take it as
random, distribued normally with mean vector zero and
convariance matrix Sg . . .

('v) •»]#(») is the four dimensipnal j th locality within h th
species random effect, normally distributed with mean
vector zero and covariance matrix Si).

(v) Si(ftj) is the four dimensional t th tree within /jth species
from the J th locality random effect, normally distaibu-
ted with mean vector zero and convariance matrix Sg
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(vi) Ckit is the four dimensional mean error vector ofjhin
where each is random and normally distributed
with mean vector zero and covariance matrix Sc.

(v//) Finally, In, and are independent
and E(^h)=E(^Hh)=E(8m,j))'=-0.

Our model is just the analogue of the univariate model on
nested sampling with unequal call frequencies discussed by Ganguli
(1941), We follow his method for finding the co-efi5cients of the
expected M.P. matrices and end up with the Table 2 of analysis of
variance..

V

TABLE 2

Source of variation d.f. S.P. matrices E{M.P. Matrices)

Species 13 A 2o+13.381 Ss +81.27 S
+246 2^ ''

Localities within species 29 B 2e+13.79] Ss +8L26

Trees within localities 218 C S«+13.372 2s

Locations* 4248 D So

*We do not have this row in our emample since we have only mean
observations on each tree-

Here, A= ^S ...) ...—X-g •••) ^

and (A/13) = - 10675527 38557 30971647 5385110r
38557 305 156717 273320

30971647 156717 121780733 201012595

53871101 373320 201012595 343055522

B= f 2 S " "ftr ft,-... -Xi ft...) (lYw-.-Xi^ ft...)
L h J 1 1

-

and (B/29) = 988308 1397 1936541 3167949"

1397 21 6231 12721

1936541 6431 7821366 9469922

316749 12721 9469922 15396656
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and C = fs s Mi- .) (X:„
V' y ' . '

hit

and (C/2I7) = ~ 299438 558 593421 994326"

558 77 1496 313

592421 1496 21011669 2575188

994325 313 2575188 4281234

])

; Referring back "to Table 2 showing the analysis of
variance, we notice thatthe corresponding co-efficients in the formula
for expected values are approximately equal. Thus will treat it as a
problem of nested sampling with equal numbers in the sub-classes
and will proceed with the usual procedure of tests of significance.

To test the locality effect, Wilk's criterion was applied to the
independent S'.P. matrices Band C, with 29 and 217 d f. respectively
and the locality effect was found to be significant be Bartlett's
approximate test. Similarly the species effects were found to be
significant upon taking the independent S.P. matrices A and B
respectively with 13 and 29 d.f. from this, we thus conclude that the
species are heterogeneous.

Start of the Problems

After concluding that the fourteen species are heterogeneous
we proceed to the main problem of forming clusters as follows

We treat A and B respectly as the between and within matrices
with 13 and 29 d.f. and present below in Table 3 the means
X\, X., Ts, and Xj of the characters of the species aiongwith the
corresponding sizes

TABLE 3

cies No. Size ^1 ^3 X, r, ra r.

1 264 1311 8.04 3664 6527 0.95 1.27 0.35

2 78 1285 5.35 2989 5657 0.92 1.07 0.64

3 158 1648 7.88 5002 8609 1.74 1.22 0.50

4 212 1137 5.45 3334 5718 1.07 0.95 0.37

5 324 1183 5.13 2877 4818 0.59 1.25 0.57

6 93 1113 5.76 2644 4831 0.57 1.39 0.47

7 380 1368 4.84 3078 5408 0.76 1.12 0.78

8 436 1341 5.57 2999 5560 0.71 1.31 0.70

9 200, 1477 6.68 4150 6952 1.19 1.29 0.56

10 90 1251 5.36 3079 5662 0.95 1.04 0 85

11 207 1046 4.87 3102 5302 1.03 ,0.80 0.34

12 458 1650 6.97 4491 7548 1.29 1.35 0.69

13 348 1647 6.59 4099 7351 1'27 1.24 0.79

14 260

CO

7-41 4285 7697 Q.40 1.32 0,61
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We solve for L (4 x 4) and O (4x4), the equations

by a suitable method, and get; —

£(4x4)=
-0.001064336 -0 158567182 -0.00006704 0.000590678

0.001162664 0.369050519 0.000134634 -0.000497864
0.001336923 -0.069180685 -0,000181461 -0.000028873
0.000325045 0:023168191 0.000669918 -0.000460445

and /(4 x4) - 25.94 0 • 0 • 0

0 11.84 . - 0 0

0 0 5.65 0

0 0 0 1.65

Applying Bartlett's modified first approximation, we test the
significance of the eigen values of/ i.e., of 25.94, 11.84, 5.65 and
1.65, and find 1.65 to benon-significant at the 5% level. Discarding
thus the last row of matrix Z,(4x 4) which corresponds to 1.65, we
get the matrix A:(3x 4). Now, if Z' (4x4) be the matrix of mean
vectors of species given in the last four columns of Table 3; we get
by the following formula ;—

• f'il4x3)=X'K*

the matrix f' (14x3) of significant discriminant scores which is
again presented in Table 3.

Note: The column under Ti corresponds to the largest
significant discriminant score, the column under Fa to the second
largest and that under Fg to the third largest significant score.

Finally, we compute the distances between the^^^^} of
species of trees by the formula (2 5) and present them in Table 4—
called "Table of Distances", arranging the distances of each popula
tion from the remaining ones in order of increasing magnitude.

Since there are three significant discriminant scores, we should
plot pairwise points i.e., (fj, fa), (T^, f^) and f^) on the plane
graph papers and then keeping them in front we should look to the
closeness of the points. To economise space, we, instead, plot,
as in Fig. I, fourteen paired points of only most significant ones
i.e., (fun).
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Forming of Culsters

Keeping before us Table 4 and Fig. I and then following the
criteria discussed in step 3 of Stage I in section 3, we predict the
following clusters :—

(2. 5, 6, 7, 8)

(2. 4, 9, 10),

Stage H

We now correct the above predicted clusters. For each of
which we have a tabular set up given below, and from them we
obtain the corrected clusters which are listed at the end of table 8.

TABLE 5

(2,5,7,8,10) (2,4,10,11)

(9, 12, 13 14) and 1 and 3 by themselves.

Populations Computed d.f. Tabular Conclusion Cluster

Involved 5% 1%

2.5,6.7,8 34,47 16 25,6131 35,6187 Significant _

2,5,6,8 19.89 12 21.7064 29.9100 Non-significant 2,5.6.8

2,5.6,7 41.33 i » >> Significant

2,6,7,8 40.56 fi ,,
)> -do- —

2,5,7,8 34-11
»> -do- —

5,6.7,8 27.91
»> -do- —

2,5,7 20 50 8 16.7783 24.0936 -do-

2,6,7 22.83 9) -do-

2,7,8 13.61 J> 9J 19 Non-significant 2,7,8*
5,6 7 23.37 • ) SJ > J Significant —.

5,7,8 20.44 fi )S -do- —

6,7.8 12.21 >i >? -do-.

6,7 17.38 4 12,1371 18.2030 -do-

5,7 15.35 ft ft -do-
—

' The cluster (2, 7, 8) wculd be fcurd included ir a bigger clu&ler in the

TABLE 6

2,4,10,11 15.76 12 21-7064 29.9100 Non-significant 2,4,10.11

9.12,13,14 16.62 12 21-7066 29.91C0 -do- 9,12,13,14

Table 7.
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TAALE 7

Populations Computed d.f. Tabular Concltision C luster

involiied 5% 1%

"1,5.7,8.10 34.98 16 25.6131 35.6187 Significant —

2,5,7,10 27.62 12 21.7064 29.9100 -dp- -

2,5,8,10 25.30 „ • ' -do- -do- -do- —

5,7,8,10 30.15 -do- -do- -do- —

2,5,7,8 26.31 -do- -do- -do- —

2,7,8,10 21.37 *»
-do- -do- Non-Significant 2,7,8,10

2,5,7 20.50 8 16.7783 24.0936 Significant —

2,5,8 17.79 -do- -do- Non-Significant 2,5,8*

2,5,10 18.90 *) -do- -do- Significant --

2,7,8 22.44 »>
-do- -cio- -do- —

5,7.10 23.62 >>
-do- -do- -do- —

5.8,10 19.09 I)
-do- -do- •do- —

'5.1 15.35 4 12.1371 18.2030 -do- —

5,10 12.98 -do- -do- -do-

*We could exclude
bigger cluster (2,5,6,8).

this "because it has already been included in the

TABLE 8

2.4,9,10 24.37 12 2\.1064 29.91C0 Significant —

2,4,9 21.88 8 16.7783 24.0936 -do- —

2.4.10 8.20 >>
-do- -do- Non-significant 2.4,10*

2,9,10 11.45 >»
-do- -do- -do- 2,9;10

4,9,10 20.42 it
-do- -do- Significant —

4.9 1(5.62 4 -do- -do- -do-

*We could exclude this because it has already been included in the bigger
cluster (2,4,10,11) .
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Thus, from tables 5 to 8, we arrive at the following clusters;

, (2,5,6,8), (2,7,8,10), (2,9,10)

(2,4,10,11) (9,12,13,14), (1, by itself

and (3, by itself)

Further, it remains to prove that each and every setof popula
tions of which these clusters form a subset is significant. To do
this, we refer back to the Table 4 of distances and also to the Fig. 1
and form the following bigger clusters by incorporating in the
corrected clusters the populations lying closest to them

(2,5,6,8,10), (2,4,7,8,10), (2,4,7,10,11),

(2,4,9,10,11), (2,9,12,13,14), (3,9,12,13,14),

(2,9,10,13), (1,6), (3,14)

We test the significance of these bigger clusters and find them
all .to be significant which confirms the conclusion made as in (A)
above.

Summary

Various approaches to multiple comparisons methods have by
now been made in Univariate Analysis of Variance. The anlogues
situations in MANOVA have been considered and three alternative
methods have been given. One of the methods has been demons
trated through an illustrative example by taking 10 species of trees
and finding amongst them homogeneous groups (or clusters) on the
basis of their static bending property.
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